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Patching the scarred heart

Shuo Cong1-3*, Jasper Chua4*, Sauri Hernandez-Resendiz1,2#  

Acute myocardial infarction (AMI) and heart failure (HF) that often follows remain the leading causes of morbidity and 
mortality worldwide. Following MI, lost cardiomyocytes (CM) are replaced by non-contractile scar tissue that increases 
ventricular wall stress while diminishing myocardial performance. With the negligible regenerative capacity of the heart, the 
field of heart engineering and regenerative therapy for MI remains a challenge. Cardiac patch often combines the use of 
cells and synthetic/biomaterials with the ultimate aim of improving myocardial function. Through the years, there have been 
remarkable breakthroughs in the fields of stem cell and biomaterials research. The advent of human-induced pluripotent 
stem cells provides a potentially unlimited source of cardiomyocytes for regenerative therapy. By combining this with 3D 
bioprinting, it was possible to generate a cardiac patch with cell and structural organizations similar to that of the native heart. 
Even with vast technological advancements, the promise of the cardiac patch to treat MI has not been fulfilled. Subsequent 
studies revealed that exosomes, rather than the cellular component of the cardiac patch, is one of the main contributors to 
its cardioprotection. In this review, we present and discuss perspectives of the cardiac patch and its drawbacks and future 
relevance as a promising intervention for MI patients.
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Acute myocardial infarction
Acute myocardial infarction (AMI) and the often-ensuing heart 
failure (HF) are leading causes of morbidity and mortality 
globally, exerting huge burdens on healthcare and economy 
(Reed et al., 2017). MI occurs as a result of cardiomyocyte 
death due to prolonged ischemia and is clinically classified 
based on the presence or absence of ST-segment elevation on 
the electrocardiogram (ECG) – ST-elevation MI (STEMI) and 
non-STEMI (NSTEMI) (Anderson and Morrow, 2017).       
     Reperfusion, using either thrombolytic therapy or 
percutaneous coronary intervention (PCI), is mandatory 
following AMI to salvage ischemic cell death and improve 
clinical outcome (Saleh and Ambrose, 2018), with the latter 
being the method of choice (Grines et al., 2003). With 
reperfusion along with appropriate medical and lifestyle 
intervention, most patients can be discharged within two to 

three days and resume normal or near normal lives (Saleh 
and Ambrose, 2018). While reperfusion reduces myocardial 
ischemic injury and limits the infarct size, the process of 
reperfusion independently activates a cascade of cellular 
injuries and exacerbates myocardial injury (Shin et al., 2017), 
causing excessive cardiomyocyte cell death and increasing the 
infarct size. This phenomenon, termed myocardial reperfusion 
injury, was shown to contribute to up to 50% of the final infarct 
size (Yellon and Hausenloy, 2007). The lost cardiomyocytes 
are replaced by non-contractile scar tissue consisting of cardiac 
fibroblasts and collagen (Jugdutt, 2009). Though scar formation 
preserves structural integrity, excessive collagen deposition 
can cause cardiomyocyte atrophy and arrhythmogenicity 
(Leask, 2015). Therefore, despite effective reperfusion 
therapy, survivors remain at risk of severe sequelae, including 
sudden cardiac death (SCD), HF, and left ventricular systolic 
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dysfunction (Docherty et al., 2020), prompting the need for new 
therapies against AMI.     
     Given that the heart has very limited capacity for 
regeneration (van Berlo and Molkentin, 2014), stem cell 
transplantation has emerged as a promising avenue to improve 
function following myocardial insult (Bartunek et al., 2013; 
Suncion et al., 2014; Perin et al., 2015; Bartunek et al., 
2017; Emmert et al., 2017; Yau et al., 2019). Some clinical 
trials have yielded positive results, showing improved left 
ventricular ejection fraction (LVEF) – a major determinant of 
long-term prognosis for STEMI – following administration of 
mesenchymal stem cells (MSC) (Kim et al., 2018) and bone 
marrow mononuclear stem cells (Stamm et al., 2007; Laguna 
et al., 2018). The benefit of stem cell transplantation extends 
beyond myocardial regeneration, and include angiogenesis 
(Tse et al., 2003; Li et al., 2010), and improvements in tissue 
perfusion and fibrotic burden (Karantalis et al., 2014). However, 
several recent clinical trials have yielded neutral results with no 
significant LVEF improvements (Nasseri et al., 2014; Wollert et 
al., 2017; Laguna et al., 2018; Nicolau et al., 2018; Traverse et 
al., 2018) (see Table 1).

Stem cell transplatation
Following MI, up to one billion cardiomyocytes in the infarct 
zone are lost (Lin and Pu, 2014). Over the past two decades, 
studies have attempted to replace the lost myocardial cells using 
cell injection. However, poor inferior cell engraftment and cell 
survival at the ischemic region coupled with rapid (hours to 
days following transplantation) cell loss have resulted in the 
low efficacy of stem cell therapy (Nguyen et al., 2016).      
     Stem cell transplantation has yielded promising results 
(Liu et al., 2018). However, it appears  current stem cell 
transplantation has yet to reach its full potential of alleviating 
cardiac injury. Several limitations have been eluded from 
previous studies, with the major limitation being poor cell 
survival and retention at the intended site (Hou et al., 2005; 
Sekine et al., 2011; Wang et al., 2013; Lepperhof et al., 2014; 
Roche et al., 2014; Yan et al., 2017) limiting the regenerative 
application of stem cell therapy. Furthermore, the harsh 
ischemic microenvironment of the injured myocardium is not 
favorable for the transplanted cells (Hu et al., 2016). Efforts 
to circumvent this include the use of intrinsic cellular homing 
(such as sphingosine-1 phosphate-sphingosine-1 phosphate 
receptor 2 (S1P-S1PR2) axis in Muse cells) (Yamada et al., 
2018), nanoparticles to facilitate homing of cells (Huang et al., 
2013; Lee et al., 2020), and cardiac patch (Roche et al., 2014; 
Bellamy et al., 2015; Zhang, 2015; Sugiura et al., 2016). While 
the former two entail a less invasive approach to improve cell 
retention, they do not necessarily improve the microenvironment 
to encourage cell survival. On the other hand, cardiac patch, 
which employs the use of biomaterials, may require more 
invasive procedures, but the use of biomaterials could provide a 
more favorable microenvironment to improve cell survival (Sun 
et al., 2020). Herein we review the recent progress on cardiac 
patches and discuss how it remains a promising endeavour to 
alleviate post-MI sequelae.      

Cardiac patch
In contrast to cell therapy alone, cardiac patch is a three-
dimensional heart tissue engineered in vitro and implanted over 
the infarcted tissue. It has been widely reported to enhance cell 
retention and survival at the implanted sites, thereby increasing 
the success of cell therapies (Madonna et al., 2019). Several 
animal studies have shown the effectiveness of cardiac patch 
in alleviating cardiac injury in MI (Table 2). A recent study has 
demonstrated the high degree of retention and vascularization 
over 14 days of transplanted cardiac patches that were printed 
with bioinks (composed of cardiac extracellular matrix (cECM), 

human heart progenitor cells (hCPCs), and gelatin methacrylate 
(GelMA) in rat models of MI (Bejleri et al., 2018). The 
effectiveness of cardiac patches was also seen in a study using a 
porcine model of MI, where a pair of clinically relevant cardiac 
patches containing trilineage cardiac cells had engraftment rates 
beyond 10% at four weeks post-implant and was associated 
with significant improvements of the left ventricular function 
coupled with reduced infarct size and myocardial wall stress in 
the peri-scar boarder zone of the myocardium (Gao et al., 2018). 
To date, there are only a few human studies being done that 
used cardiac patch to alleviate post-infarct sequelae (Menasche 
et al., 2015; Menasche et al., 2018; Prat-Vidal et al., 2020).
     The earliest cardiac patch that was implanted in a human 
contained cardiac-committed human embryonic stem cells 
(hESCs) – Isl-1+ SSEA-1+ (stage-specific embryonic antigen-1) 
cells – embedded in a fibrin scaffold. The 68-year-old patient 
presented with HF as a result of a previous MI, and was 
designated for surgical anterior myocardial revascularization 
via coronary artery bypass graft (CABG). During the CABG, 
the cardiac patch was secured between the pericardium and 
epicardium with the use of sutures. Functional improvements 
were observed after three months, with the patient having 
increased LVEF, 6 min walking distance, and decreased LV 
end-diastolic and end-systolic volumes (Menasche et al., 2015). 
Though these improvements were only seen in one patient, 
the authors conducted a similar study subsequently on six 
patients with severe ischemic LV dysfunction resulting from 
previous MI. That study yielded similar optimistic results 
in the aforementioned parameters (Menasche et al., 2018), 
demonstrating both the efficacy as well as safety of cardiac 
patches. Moving forward, the recent first-in-human study 
scaled up a 2 cm2 preclinical construct (Galvez-Monton et al., 
2017) to a 16 cm2 decellularized human pericardial matrix 
colonized with 12.5 million human viable Wharton’s jelly-
derived MSCs (WJ-MSCs) (Prat-Vidal et al., 2020). The cardiac 
patch was applied by surgical glue over non-revascularizable 
myocardial scar tissue while CABG was being performed for 
revascularizable regions. The patient showed ~9% reduction in 
scar mass in the treated area (Prat-Vidal et al., 2020). Cardiac 
patches offer a promising integrative approach to repair the 
injured heart following MI, with optimistic results ranging from 
improvement of cell retention and engraftment to reducing 
adverse LV remodeling, preventing LV dilation, and thinning, 
and enhancing LV function (see Table 3). Nonetheless, cardiac 
patch has its limitation, and is currently not applicable for 
clinical application (Zhang et al., 2018).   

The challenges of patching the heart
The main challenges in engineered heart tissue (EHT), 
or cardiac patch, includes but are not limited to (1) the 
optimization of scaffold mechanics and biocompatibility, (2) 
cell maturation and contractile ability, (3) electromechanical 
integration, (4) immune rejection, (5) tissue vascularization and 
oxygen supplementation (Jackson et al., 2020). 

Scaffold mechanics and biocompatibility
An ideal scaffold for cardiac tissue engineering should possess 
excellent mechanical properties and electrical conductivity to 
perform normal physiological functions of the heart (Qasim 
et al., 2019b). Thus, an ideal scaffold must possess sufficient 
porosity for cell ingrowth (Loh and Choong, 2013; Bruzauskaite 
et al., 2016), architecture that facilitate proper cardiomyocyte 
alignment (Homma et al., 2020), mechanical properties to 
withstand surgical implantation, and surface characteristics to 
support firm cell adhesion and growth (Prasad and Krishnan, 
2008; Khalili and Ahmad, 2015). Recent advances in 
biomaterials have provided a variety of different approaches to 
create scaffolds for tissue engineering, which include the use of 
nanofibers (Joshi and Kothapalli, 2015), hydrogels (El-Sherbiny 



REVIEW ARTICLE

Conditioning Medicine 2021 | www.conditionmed.org

Conditioning Medicine | 2021, 4(2):100-112

102

and Yacoub, 2013; Radhakrishnan et al., 2014), injectable 
gels (Alagarsamy et al., 2019), decellularization (Rana et al., 
2017; Daley et al., 2018), and 3D printing (Mosadegh et al., 
2015; Qasim et al., 2019a). Among which, generating scaffolds 
from decellularization have been particularly attractive as it 
preserves the structural “blueprint” of the actual heart. In a 
breakthrough study in 2008, researchers successfully created a 
physiologically functional heart by first decellularizing the rat 
whole heart via coronary perfusion and later incorporating the 
decellularized scaffolds with cardiac and endothelial cells (Ott 
et al., 2008). Subsequently, in 2016, researchers successfully 
repopulated decellularized human myocardial slices (200 
µm thick with hiPSC-CMs) to generate myocardial tissue 
capable of spontaneous contraction (Guyette et al., 2016). 
More recently, a pre-clinical study on swine models of MI 
demonstrated that the implantation of such cardiac patch led to 
restoration of ventricular function and better recovery following 

MI. The cardiac patch was made of decellularized myocardial 
and pericardial tissues that were repopulated with adipose tissue 
derived MSCs (Perea-Gil et al., 2018).     
     However, decellularization and repopulation of cells are 
not without imperfections. The balance between the removal 
of cellular components and preservation of structural and 
biomechanical integrity of the three-dimensional extracellular 
matrix remains to be optimized (Di Meglio et al., 2017; Kc et 
al., 2019). Other challenges of using decellularized extracellular 
matrix (dECM) includes the homogenous distribution of 
repopulated cells within the scaffold compartments, and the 
diffusion limit of thick cardiac dECM (Kc et al., 2019).     
     Other noteworthy innovation includes the recent three-
dimensional (3D) bioprinting, which uses a layer-by-layer 
approach to deposit bioink filaments to generate cardiac patches 
(Gardin et al., 2020). The advent of additive manufacturing 
3D bioprinting technology allows heterogenous cell types, 

Table 1. Clinical trials of stem cell therapy against MI in the recent five years 

Year Randomized Trials Arms Number Type of cells Route of 
delivery 

Follow-
up 

LVEF 
variation  
(Study vs 
Control) 

Reference 

Positive Results 

2020 Yes NCT02870933 Receive CD133+ cells and CABG; 
CABG alone 30 

CD133+ bone 
marrow stem 
cells 

Trans-
epicardial and 
transseptal 
implantation 

6 
months 

Δ=8.69% 
vs 1.43%, 
p=0.04 

(Soetisna 
et al., 
2020) 

2020 Yes MSC-HF 
(NCT00644410) 

Bone marrow-derived mesenchymal 
stem cells (MSCs); Placebo 60 

Bone marrow-
derived 
mesenchymal 
stromal cells 

Intramyocardial 
injection 

12 
months 

Δ=5.2% 
vs -1.0%, 
p<0.0001 

(Mathiasen 
et al., 
2020) 

2018 Yes 
COMPARE CPM-
RMI 
(NCT01167751) 

CD133+ cells; bone marrow 
mononuclear cells; Placebo 77 

CD133+ bone 
marrow stem 
cells or bone 
marrow 
mononuclear 
cells 

Intramyocardial 
injection 

18 
months 

Δ 
(CD133+, 
placebo) 
= 8.962 
p=0.011; 
Δ (MNC, 
placebo) 
= 6.917 
p=0.022 

(Naseri et 
al., 2018) 

Neutral Results 

2021 Yes 
CardiAMP Heart 
Failure 
(NCT02438306) 

Bone marrow mononuclear cells; Sham 250 
Bone marrow 
mononuclear 
cells 

Trans-
endocardial 
injection 

12 
months 

Outcome 
pending  

(Raval et 
al., 2021) 

2020 Yes CHART-1 
(NCT01768702) Cardiopoietic stem cells; Sham 315 Cardiopoietic 

stem cells 
Intramyocardial 
injection 2 years Neutral at 

52 weeks 

(Bartunek 
et al., 
2020) 

2019 Yes TEAM-AMI 
(NCT03047772) 

Routine atorvastatin (ATV) (20 mg/d) 
with placebo or bone marrow MSCs 
(MSCINJ) and intensive ATV (80 mg/d) 
with placebo or MSCINJ 

100 
Bone marrow 
mesenchymal 
stem cells 

Intracoronary 
infusion 

12 
months 

Outcome 
pending  

(Xu et al., 
2019) 

2019 Yes MyStromalCell 
(NCT01449032) 

Adipose-derived stromal cell in border 
zone; Placebo 60 

Adipose-
derived 
stromal cells 

Intramyocardial 
injection 3 years 

Exercise 
tolerance
s benefit 
not clear 

(Qayyum 
et al., 
2019) 

2019 Yes SCIENCE 
(NCT02673164) 

Allogeneic cardiology stem cell centre-
adipose derived stem cells; Placebo  133 

Allogeneic 
cardiology 
stem cell 
centre-adipose 
derived stem 
cells 

Intramyocardial 
injection 

6 
months 

Outcome 
pending  

(Paitazoglo
u et al., 
2019) 

2018 Yes CAREMI 
(NCT02439398) Allogeneic cardiac stem cells; Placebo 49 

Allogeneic 
cardiac stem 
cells 

Intracoronary 
infusion 

12 
months 

Δ=7.7% 
vs 8.6%, 
p=ns 

(Fernandez
-Aviles et 
al., 2018) 

2018 Yes TIME 
(NCT00684021) 

Bone marrow mononuclear cells post 
PCI (3 days); placebo 120 

Bone marrow 
mononuclear 
cells 

Intracoronary 
infusion 2 years 

Δ=2.8% 
vs 4.7%, 
p=ns 

(Traverse 
et al., 
2018) 

2017 No NCT02387723 Allogeneic adipose derived stem cells 10 

Allogeneic 
adipose 
derived stem 
cells 

Intramyocardial 
injection 

6 
months 

Δ=2.9% 
(95% CI: 
0.2 to 
6.1; 
p =0.065) 

(Kastrup et 
al., 2017) 

2017 Yes PERFECT 
(NCT00950274) 

CD133+ cells and CABG; Placebo and 
CABG 82 

CD133+ bone 
marrow stem 
cells 

Intramyocardial 
injection 

180 
days 

Δ=10.4% 
vs 8.8%, 
p=ns 

(Steinhoff 
et al., 
2017) 

2017 Yes 
BOOST-2 
(ISRCTN1745740
7) 

High-dose (hi)BMCs, low-dose 
(lo)BMCs, irradiated hiBMCs, or 
irradiated loBMCs; Placebo 

153 
Nucleated 
bone marrow 
cells 

Intracoronary 
infusion 

6 
months 

Δ=(hiBM
Cs) 4.3% 
vs 
(Control) 
3.3%, 
p=ns 

(Wollert et 
al., 2017) 

2016 Yes SWISS-AMI 
(NCT00355186) 

Bone marrow mononuclear cells post 
PCI (5-7 days OR 3-4 weeks); Sham 200 

Bone marrow 
mononuclear 
cells 

Intracoronary 
infusion 

12 
months 

Δ=-0.9% 
vs -0.7% 
vs -1.9%, 
p=ns 

(Surder et 
al., 2016) 

2016 Yes 
REGENERATE-
AMI 
(NCT00765453) 

Bone marrow-derived cells within 24h 
post PCI; Placebo 100 Bone marrow-

derived cells 
Intracoronary 
infusion 1 year 

Δ=5.1% 
vs 2.8%, 
p=ns 

(Choudry 
et al., 
2016) 
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biomaterials, and signalling factors to be precisely deposited 
and arranged in organized geometries similar to those found 
in the native counterparts (Alonzo et al., 2019). Some of the 
biomaterials that were utilized for myocardial tissue printing 
include alginate ((Rastogi and Kandasubramanian, 2019), 
collagen (Jakab et al., 2008), gelatin (Gaetani et al., 2015), fibrin 
(Barsotti et al., 2011), and synthetic biomaterials (Ho et al., 
2017). Not surprisingly, 3D bioprinting has been explored in the 
context of dECM (Pati et al., 2014). Three-dimensional printed 
dECM-based cardiac patch retains the microenvironmental cues 
that facilitates cardiomyocyte differentiation and maturation 
(Das et al., 2019). Such results were echoed in another recent 
study that derived dECM from porcine heart. Human MSCs 
were then printed onto porcine dECM to generate the cardiac 
patch, which was implanted on the epicardial infarct region of 
a rat model of MI. The implanted patch provided a conducive 
microenvironment and paracrine factors that promote vascular 
regeneration, resulting in restoration of cardiac function (Park 
et al., 2019).

Cell maturation and contractile ability
One of the early limitations of using human induced pluripotent 
stem cell-derived cardiomyocytes (hiPSC-CMs) is their 
immature phenotype. Since then, many have attempted 
to facilitate the maturation of hiPSC-CMs to achieve a 
more adult-like phenotype – including extended culture, 
electrical and mechanical stimulation, extracellular matrix 
modulation, and using microRNAs (Ramachandra et al., 
2021). In the context of serum-free culture, several factors 
were identified to be crucial for the maturation of hiPSC-

CMs. These include triiodothyronine (T3), insulin-like growth 
factor 1(IGF-1), and glucocorticoid dexamethasone. T3 is 
essential for cardiomyocyte excitability and contractibility 
was found to enhance the resting membrane potential while 
IGF-1 and dexamethasone produce synergistic effects on 
cellular bioenergetics and traction force (Birket et al., 2015). 
Additionally, further functional and metabolic maturation of 
hiPSC-CMs were observed when these three factors were 
coupled with peroxisome proliferator-activated receptor alpha 
(PPAR-α) activation and hypoxia inducible factor-1 alpha (HIF-
1α) inhibition (Gentillon et al., 2019). Direct supplementation 
of metabolic substrate such as palmitate/oleate (fatty acids) was 
also found to promote metabolic maturation of hiPSC-CMs, 
with better mitochondrial oxidative phosphorylation, and ATP 
production (Ramachandra et al., 2018).
     Interestingly, 3D cultures of hiPSC-CMs generate greater 
mitochondrial mass as compared to 2D hiPSC-CMs cultures, 
and produce mitochondrial proteomic profiles similar to adult 
human cardiomyocytes (Ulmer et al., 2018). By combining 
different cell populations – hiPSC-CMs, cardiac fibroblasts, 
and cardiac endothelial cells – maturation is further enhanced, 
where 3D cultures of hiPSC-CMs exhibit improved sarcomeric 
structures with transverse tubules, greater contractility and 
mitochondrial respiration, and more mature electrophysiological 
properties. The study found that the enhanced maturation 
was associated with the coupling of hiPSC-CMs with cardiac 
fibroblast via connexin 43 (CX43) gap junctions and increased 
intracellular cAMP (Giacomelli et al., 2020). Similarly, co-
culturing hiPSC-CMs with MSCs showed improved contractile 
properties, with the hiPSC-CMs exhibiting aligned myofibrils 

 

Table 2. Recent preclinical studies of cardiac patch 
Year Species Material of patch Type of cells Route of 

delivery 
Follow

-up 
LVEF 

improvement 
Infarct size 
reduction Other benefits Reference 

2021 Rat 

Oxidized 
alginate(OA)/gelatin(Geln)/
polyacrylic acid(PAA) 
hydrogel 

Rat neonatal 
cardiomyocytes 

Epicardial 
implantation 

4 
weeks 

Around 25% 
increase in LVEF 
compare to MI 
group, p<0.001 

Decreased from 
82.73% (in MI 
group) to 
33.25%, 
p<0.01 

Increased arterioles 
and micro-vessels 
densities 

(Song et al., 
2021) 

2021 Rat ECJM hydrogel (made by 
decellularized heart tissues) hiPSC-CPCs Intrapericardial 

injection 
4 

weeks 

Increased from 
29.4% (in MI 
group) to 45.4%, 
p<0.0001 

Decreased from 
38.99% (in MI 
group) to 
18.97%, 
p<0.0001 

Mitigated immune 
response and 
increased cells 
retention  

(Zhu et al., 
2021) 

2021 Rat Decellularized placenta hiPSC-CMs Epicardial 
implantation 

4 
weeks 

Around 15% 
increase in LVEF 
as compared to MI 
group, p<0.05 

Decreased from 
20% (in MI 
group) to 12%, 
p<0.05 

Promoted 
neovascularization 

(Jiang et al., 
2021) 

2021 Rat Acetylated chitosan 
hydrogel - Epicardial 

implantation 
1 

month 

Maximum 40% 
increase in LVEF 
as compared to MI 
group, p<0.01 

- Attenuated fibrosis 
and inflammation 

(Domenge et 
al., 2021) 

2020 Mouse 

3D printed scaffold with 
gelatin 
methacrylate(GelMA) and 
polyethylene glycol 
diacrylate(PEGDA) inks 

hiPSC-CMs, 
hECs, hMSCs 

Epicardial 
implantation 

4 
months 

Increased 
from56.1% (in MI 
group) to 64.1%, 
but no change as 
compared to cell 
only group 

Decreased from 
14.3% (in MI 
group) to 5.6% 

Increased 
vascularization and 
vascular 
remodelling 

(Cui et al., 
2020) 

2020 Rat Alginate microspheres and 
collagen hiPSC-CMs Epicardial 

implantation 
1 

month 

18.6% increase in 
LVEF as compared 
to MI group, 
p=0.006 

No significant 
change in 
infarct area size 

Robust 
angiogenesis and 
neovascularization  

(Munarin et 
al., 2020) 

2020 Rat/Pig 
Decellularized porcine 
myocardial extracellular 
matrix 

Secreted factor 
from human 
cardiac stromal 
cells 

Epicardial 
implantation 

21 
days 

(rats); 
7 days 
(pigs) 

Rat-around 20% 
increase in LVEF 
as compared to MI 
group, p<0.0001; 
Pig-around 5% 
increase in LVEF 
as compared to MI 
group, p<0.05; 

Rat-decreased 
from 30% (in 
MI group) to 
18%, p<0.01; 
Pig-decreased 
infarct area on 
some heart 
slices  

Promoted 
angiomyogenesis 

(Huang et al., 
2020) 

2019 Rat 
Dopamine(DOPA)-coated 
Polypyrrole(PPy)/poly(glyc
olic acid)(PGA) 

- Epicardial 
injection 

4 
weeks 

Around 20% 
increase in LVEF 
as compared to MI 
group, p<0.01 

Decreased from 
55% (in MI 
group) to 20%, 
p<0.001 

- (Song et al., 
2019) 

2018 Mouse 

Elastic hydrogel(EH) 
/aligned nanocollagen 
fibrous(AF)/nanogold(AuN
Ps) 

Rat neonatal 
ventricular 
myocytes 

Epicardial 
implantation 

4 
weeks 

Around 12% 
increase in LVEF 
as compared to MI 
group, p<0.001 

Decreased the 
scar size of 
around 25%, 
p=0.04 

Increased 
vascularization and 
positive connexin-
43 discs 

(Hosoyama et 
al., 2018) 

2018 Rat 

Hyperbranched poly(amino 
ester)(HPAE)-
pyrrole(Py)/Gelatin and 
Fe3+ 

- 

Epicardial 
painting  
(a novel 
technique) 

4 
weeks 

Around 25% 
increase in LVEF 
as compared to MI 
group, p<0.01 

Decreased from 
50% (in MI 
group) to 15%, 
p<0.01 

Boosted the 
transmission of 
electrophysiologica
l signals and 
promoted 
revascularization 

(Liang et al., 
2018) 

2018 Pig Fibrin 
hiPSC-CMs, 
hiPSC-SMCs, 
hiPSC-ECs 

Epicardial 
implantation 

4 
weeks 

Around 10% 
increase in LVEF 
as compared to MI 
group, p<0.05 

Decreased from 
10% (in MI 
group) to 8%, 
p<0.05 

Promoted 
angiogenesis and 
cell survival in the 
peri-scar border 
zone 

(Gao et al., 
2018) 
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with A-, H-, and I-bands that are able to contract and relax 
rapidly (Yoshida et al., 2018).     
     Remarkably, the microenvironment has a huge impact 
on cardiomyocyte maturation, where myocardial-grafted 
cardiac patch resulted in nascent tissue-like organization with 
aligned cardiomyocytes in the scaffold that was accompanied 
by a greater degree of neovascularization and microvascular 
maturation as compared to the peripherally grafted cardiac 
patch (Ja et al., 2018). In addition, hiPSC-CMs alone may 
not be optimal for cardiac regeneration. In particular, a stem 
cell study showed that when injected into the peri-infarcted 
anterior free wall of a murine model of MI, hiPSC-derived 
cardiac progenitors provided greater protection compared to 
hiPSC-CMs, resulting in greater functional recovery of the 
heart (Ja et al., 2016). By incorporating hiPSC-CMs with 
human dermal fibroblasts into fibrin hydrogels and applying 
electrical stimulation to induce auxotonic contractions, the 
cardiac patch exhibit adult-like gene expression profiles, 
organized ultrastructure, sarcomere length, and mitochondrial 
density. Functionally, these cardiac patches have a positive 
force-frequency relationship and functional calcium handling. 
Cardiomyocyte elongation and alignment were facilitated by 
the passive tension created by the stretching motion within 
the cardiac patch (Ronaldson-Bouchard et al., 2018). Also, 
instead of electrical stimulation, a separate study has stimulated 
similar cardiac patch using a dynamic (rocking) platform, and 
also resulted in matured cardiomyocytes – with presence of 
intercalated disk-like structures (Gao et al., 2018).   
     Moreover, it seems that the presence of other cell population, 
such as endothelial cells, smooth muscle cells, and MSCs, may 
significantly improve the contractility (Burridge et al., 2014) 
and therapeutic effects (Ye et al., 2014) of cardiac patches.  

Electromechanical Integration
Besides the cellular immaturity of cardiac patches, another 
important hurdle to overcome is the electromechanical 
integration between the implanted cardiac patch and the host 
myocardium since contraction-competent cardiac patches may 
disrupt the cardiac syncytium and de-synchronize cardiac 
rhythm, and potentially exacerbate cardiac arrhythmia, which 
could lead to pathological conditions (Puig-Sanvicens et al., 
2015). Non-human primate studies have shown that the direct 
injection of hiPSC-CMs has the potential to cause dangerously 
abnormal ventricular electrical activities (Chong et al., 2014), 
while epicardial injection of hESC-CMs resulted in graft-
induced arrhythmias (Liu et al., 2018). 
     To  tackle  th is ,  conduct ive  polymers  –  such  as 
polydimethysiloxane (Jackman et al., 2018), polypyrrole (Cui 
et al., 2018), and poly-3-amino-4-methoxybenzoic acid (Zhang 
et al., 2020) – were incorporated into the scaffolds (Solazzo et 
al., 2019). A recent study has demonstrated that an injection of 
conductive polypyrrole-chitosan hydrogel into the scar zone 
following MI improved the electrical conduction across the 
fibrotic scar and resynchronized the cardiac contraction of the 

rat’s heart (He et al., 2020). Another study conjugated a choline-
based bio-ionic liquid onto gelatin methacryloyl to generate a 
scaffold with better conductive and adhesive property. After 
which, primary cardiomyocytes and cardiac fibroblasts were 
incorporated into the scaffold, and the resulting cardiac patch 
attenuated post-MI remodeling in murine hearts (Walker et al., 
2019).
     Taken together, conductive scaffolds offer a platform to 
improve the electromechanical integration of cardiac patches 
while improving the synchronization of cardiac contraction. 
Nonetheless, further research is required to optimize the 
conductivity of cardiac patches to achieve similar properties of 
the native heart (Baei et al., 2020).

Immune rejection
Immunogenicity is expected to be less of a problem in 
clinical practice because hiPSC-CMs can be generated from 
the patient’s own somatic cells. However, the urgency for 
prompt treatment following MI to minimize cardiac injury 
(Lesneski, 2010) precludes the use of autologous hiPSC-
CMs as a substantial amount of time is needed for hiPSC 
reprogramming and subsequent differentiation into hiPSC-
CMs (Blair and Barker, 2016; Lipsitz et al., 2016). On the other 
hand, while using pre-made allogenic hiPSC-CMs for cardiac 
patches is more practical, it runs the risk of immune rejection 
due to the human leukocyte antigen (HLA) – the human major 
histocompatibility complex (MHC) (de Rham and Villard, 
2014). Thus, the risk versus benefit ratio of the use of hiPSC-
CMs remains highly debatable.
     By inactivating MHC class I and II genes and overexpressing 
CD47, researchers were able to generate hypoimmunogenic 
hiPSCs that retained the abili ty to differentiate into 
spontaneously beating hiPSC-CMs (Deuse et al., 2019). 
This opens the exciting possibility of having a universally 
compatible source of readily available hiPSC-CMs for 
regenerative medicine. Alternatively, the use of MHC haplotype 
homozygous cells could also overcome immunorejection for 
allogenic hiPSC-CM transplantation (Kawamura et al., 2016), 
with a recent clinical study demonstrating the usefulness 
of hiPSC banking for hematologic and nonhematologic 
malignancies (Morishima et al., 2020). All of the paired 39 
donor HLA homozygous donor to patient heterozygous, 
except one (early death), engrafted neutrophils (the primary 
outcome of the study) with incidence of acute graft-versus-host 
disease of 17/38 (grades II to IV) and 3/38 (grades III to IV). 
The study concluded that HLA-homo hiPSC transplantation 
led to favorable engraftment (Morishima et al., 2020). More 
interestingly, a recent study demonstrated that syngeneic MSCs 
reduces immune rejection after transplantation of allogenic 
hiPSC-CMs in mice (Yoshida et al., 2020). Such findings add 
to the aforementioned benefits of incorporating MSCs (i.e., 
enhanced maturation and cardioprotection) in cardiac patches. 
Furthermore, syngeneic MSCs can be readily harvested using 
methods such as AdiPrep® (Dragoo and Chang, 2017).  

 
 
 
 
 

Table 3. Clinical trials of cardiac patch implantation against MI 

Year Randomized Trials Intervention Number Type of cells Route of 
delivery 

Follow-
up 

LVEF variation  
(Study vs 
Control) 

Reference 

2020 No PERISCOPE 
(NCT03798353) 

Decellularized pericardial 
matrix colonized with 
human viable Wharton's 
jelly-derived 
mesenchymal stromal 
cells 

1 

Allogeneic 
Wharton's 
jelly-derived 
MSCs 

Surgical 
epicardial 
surface delivery 

3 
months 

Reduction of scar 
mass, LVEF 
benefit not clear 

(Prat-Vidal 
et al., 
2020) 

2018 No ESCORT 
(NCT02057900) 

hESC-derived 
cardiovascular 
progenitors embedded 
fibrin patch 

6 
hESC-derived 
cardiovascular 
progenitors 

Epicardial 
delivery during 
CABG 

12 
months 

26%(IQR:22-
32%) to 
38.5%(IQR:33.5-
41%) p=ns 

(Menasche 
et al., 
2018) 

2017 No UMIN000003273 
Scaffold-free cell sheets 
derived from skeletal 
muscle 

15 Skeletal 
muscle 

Surgical 
epicardial 
surface delivery 

12 
months 

26.74±8.0% to 
30.7±10.0% 
p<0.01 

(Miyagawa 
et al., 
2017) 
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Vascularization and oxygen supply
Poor perfusion of cardiac patches remains a major issue for 
cells-containing cardiac patches. Previously, because of the 
lack of vasculature, the viable cardiac cell sheet-layered 
tissues were limited to three layers (~80 µm) (Shimizu et 
al., 2006). Moreover, the suboptimal neovascularization and 
microvascular maturation could be an intrinsic limitation of 
the current hiPSC-CMs as a study showed that cardiac patch 
containing human embryonic stem cell-derived cardiomyocytes 
(hESC-CMs) generated significantly more robust and mature 
microvasculature as compared to cardiac patches containing 
hiPSC-CMs (Ja et al., 2018).
     Strategies to rapidly perfuse thick, cell-dense cardiac patches 
to avoid hypoxia and necrosis are critical to support the long-
term survival of the implanted cardiac patches (Chang and 
Niklason, 2017; Tang et al., 2018). Recent advancements have 
improved the perfusion of cardiac patches. By incorporating 
different cell types besides hiPSC-CMs, such as endothelial 
cells and MSCs, the hybrid cardiac patch was able to generate 
micro-vessels and integrate rapidly with the host (Huang et 
al., 2019). Recently, the use of microfluidic hydrodynamics 
focusing has become an interesting strategy to vascularize 
cardiac patches as researchers were able to construct 
biomimetic microvessels. Subsequently, these biomimetic 
microvessels were incorporated into the cardiac patch resulting 
in a vascularized cardiac patch that has the natural architecture 
and function of capillaries. When implanted in a rat model of 
AMI, the cardiac patch induced cardiomyocyte proliferation 
at the peri-infarct region four-weeks post-treatment with a 
significant increase in myocardial capillary density as compared 
to the conventional cardiac patch (Su et al., 2018).

The mechanism of aciton
Structural Support
Following MI, the injured myocardium is replaced by a thin 
fibrotic scar that increases wall stress in the surrounding tissues. 
Thus, the addition of wall thickness and rigidity by a cardiac 
patch may improve myocardial performance and prevent 
detrimental LV remodeling (Domenech et al., 2016). Decrease 
infarct size and reduced wall thinning were also seen (in rat 
model of MI) from a cardiac patch without cardiomyocytes. 
This fibrin-based, stretch-conditioned cardiac patch served as a 
proof-of-concept of the benefits conferred by structural support 
by the scaffold rather than the replenishment of cardiomyocytes 
(Wendel et al., 2014). In another study, acellular cardiac patches, 
generated using type I collagen, attenuated LV remodeling 
with reduced fibrosis and formation of an interconnected blood 
vessels at the infarct site, resulting in significant protection 
against cardiac injury at both the anatomical and functional 
levels following MI (Serpooshan et al., 2013). 

Direct remuscularization
The original goal of the cardiac patch is to replace fibrotic scar 
tissue with electromechanically functional and vascularized 
tissue (Lakshmanan et al., 2012; Ye et al., 2013). While a 
study has shown that cardiac patches containing hiPSC-
CMs, fibroblasts, and endothelial cells were able to reduce 
the infarct size and increase the vessel numbers following 
MI (Yeung et al., 2019), another study (employing a cryo-
injury guinea pig model) demonstrated that cardiac patches 
only resulted in partial remuscularization of the injured heart 
(Querdel et al., 2021). Given the poor retention and survival 
of transplanted cells, multiple stem cell transplantation studies 

Figure 1. Schematic description of the mechanistic action of cardiac patch. The major mechanisms include (A) providing structural support, (B) 
promoting direct myocardial remuscularization, and (C) producing cardioprotective paracrine factors. (A) Since a thin fibrotic scar replaces the 
myocardium at the infarct zone, the rigid scaffold of the cardiac patch provides additional wall thickness and rigidity, which could enhance 
myocardial function while preventing detrimental left ventricular remodeling. (B) With the tremendous loss of cardiomyocytes following AMI, 
early studies focus on regenerating the injured myocardium by introducing cells with therapeutic properties. While there were optimistic 
results that implanted cells were able to reduce the infarct size and stimulate vascularization, there were also contrasting results that 
showed partial remuscularization with suboptimal biophysical integration of the cardiac patch. Currently, more evidence is attributing the 
cardioprotective effects of cardiac patch to the paracrine factors produced by the implanted cells. (C) The implanted cells such as adult stem 
cells which secrete a variety of paracrine factors which is capable of altering the myocardial microenvironment and influence myocardial 
remodeling. 
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concluded that the functional improvements seen were not due 
to direct remuscularization but rather the paracrine effects by 
the transplanted cells (Gnecchi et al., 2006; Takahashi et al., 
2006; Uemura et al., 2006; van der Spoel et al., 2012; Zuo et 
al., 2012; Bao et al., 2017; Wu et al., 2017; Dougherty et al., 
2018; Zhu et al., 2018). As more data has emerged, it appears 
that remuscularization by the cardiac patch is controversial, 
especially with the suboptimal biophysical integration of 
the cardiac patch and the host myocardium (Huang et al., 
2019). Current research attributes the main contributor of 
cardioprotective effects by cardiac patches to be the paracrine 
factors (Hodgkinson et al., 2016). Such a turn of events could 
be seen as a blessing since clinically relevant cell-based 
therapy would require billions of cardiomyocytes (Chong et al., 
2014; Liu et al., 2018), making it highly laborious and time-
consuming.

Paracrine Effect     
Current evidence suggests the majority of the benefits 
associated with cardiac patches likely revolves from the 
paracrine activity of implanted cells (Qasim et al., 2019b), 
with a recent study showing the secretome from hiPSCs 
and MSCs is able to produce significant improvement of 
cardiac function and remodeling following MI (Alrefai et al., 
2019), thereby circumventing the need for exogenous cell 
implantation. Furthermore, a cardiac patch containing hiPSC-
CMs, fibroblasts, and endothelial cells, produced improvement 
of heart function that is correlated with patch production of 
extracellular vesicles (i.e. exosomes). In addition, the cardiac 
patch led to regeneration of cardiac tissues, angiogenesis in the 
infarcted area, and reduced scar tissue formation (Yeung et al., 
2019).
     Adult stem cells secrete a variety of growth factors and 
chemokines - including vascular endothelial growth factor 
(VEGF), basic fibroblast growth factor (bFGF), and IGF-1 – 
which alters the microenvironment of the myocardium and 
regulate remodeling following MI (Hodgkinson et al., 2016; 
Broughton et al., 2018). To facilitate the direct delivery of the 
secreted regenerative factors into the injured myocardium, 
microneedles were engineered on a cardiac patch incorporated 
with cardiac stromal cells. The resulting cardiac patch 
effectively augmented the myocardial function and enhanced 
angiomyogenesis (Tang et al., 2018).    

Future directions
With many optimistic results thus far, the cardiac patch remains 
a promising avenue to pursue to attenuate cardiac injury 
associated with MI. However, more evidence suggests that the 
beneficial effects of the cardiac patch are largely due to the non-
cellular part of the cardiac patch (Domenech et al., 2016; Qasim 
et al., 2019b). Therefore, we envision that the next generation 
of cardiac patch would be an acellular one that is focused on 
providing structural support while serving as a delivery vehicle 
for the continuous release of cardioprotective secretomes. 
Being cell-free not only reduces the risk of immune rejection 
but overcomes the need for perfusion, electromechanical 
integration, and cell maturation – all of which are the major 
roadblocks of today’s cardiac patch. 

Conclusion
AMI remains as one of the leading causes of death despite 
tremendous leaps in medical advancements. Over the 
years, research has led to mechanistic insights on the 
cardioprotective benefits conferred by cardiac patches. These 
include (1) providing structural support, (2) promoting direct 
remuscularization, and (3) secretion of cardioprotective 
paracrine factors (see Figure 1). Earlier studies have focused 
on “direct remuscularization”, optimizing the delivery and 
incorporation of cardiomyocytes and other cell types to the 

infarct zone in an attempt to regenerate and repair myocardium. 
Soon, it became clear that cardiomyocytes were not the only 
important cell type. Other important cell types include MSCs, 
cardiac fibroblasts, and endothelial cells. However, increasing 
evidence have suggested that the key contributors to the 
protective effects of cardiac patches are the secretomes or 
exosomes produced by the implanted cells rather than the cells 
themselves. Therefore, we envision that the next generation of 
cardiac patches would be an acellular one that deliver protective 
secretomes. Being acellular would help overcome most of the 
major obstacles faced by the current cardiac patches. With 
optimistic data of cardiac patches presented by numerous 
studies, we believe that the cardiac patch remains a promising 
avenue to attenuate post-MI sequelae. 
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